IONISATION OF SOME FLAVANOLS AND DIHYDROFLAVONOLS

N. P. SLABBERT

Leather Industries Research Institute, Rhodes University, Grahamstown, South Africa

(Received in UK 9 September 1976; Accepted for publication 7 October 1976)

Abstract—Ionisation constants of catechin (1), robinetinidol (2), leuco-fisetinidin (3), fustin (4), dihydrorobinetin (5), dihydroquercetin (6) and a series of polyphenols are reported. The pK_a values of these flavonoids are shown to fit the linear relationships between pK_a and substituent σ constant for a series of related phenols.

Although use is made of the different acidities of flavonoids for the elucidation of hydroxylation patterns by UV analysis, actual ionisation constants of only a few 3- and 5-hydroxy-flavones are known. Herein we describe the determination of the ionisation constants of catechin (1), robinetinidol (2), leuco-fisetinidin (3), fustin (4) and dihydrorobinetin (5) present in wattle-bark extracts (Acacia mearnsii), and the related dihydroflavonol, dihydroquercetin (6).

1: $R^1 = R^2 = R^3 = H$; $R^4 = OH$

2: $R^1 = OH$; $R^2 = R^3 = R^4 = H$

3: $R^1 = R^2 = H$; $R^3 = OH$; $R^4 = H$

4: $R^1 = H$; R^2 , $R^3 = O$; $R^4 = H$

5: $R^1 = OH$; $R^2, R^3 = O$; $R^4 = H$

6: $R^1 = H$; $R^2, R^3 = O$; $R^4 = OH$

The potentiometrically determined ionisation constants of 1-6 (Table 1) are macroscopic constants and identifying these values with specific OH groups is not valid, although an OH group of the pyran ring may be discounted as a possibility by virtue of the very weak acidity of aliphatic alcohols. However, the A- and B-rings of 1-6 are not conjugated and ionisation of OH groups of one ring system should not appreciably affect ionisation of OH groups of the other. Hence, ionisations of OH groups of ring A are independent and distinguishable from those of ring B. The macroscopic ionisation constants (K'_a) are then related to the microscopic constants (K_a) , which can be identified with specific OH groups, by

$$K_a^{A \text{ or } B'} = K_a^A + K_a^B \tag{1}$$

and

$$K_a^{B \text{ or } A'} = K_a^A K_a^B / (K_a^A + K_a^B)$$
 (2)

[the more acidic macroscopic constant is used in eqn (1)] where the constants with superscripts A and B refer to the ionisation constants of ring A and ring B, respectively. pK'_a values of 1-6 were assigned to ring A or ring B (see Table 1) as follows. Pyrocatechol (7) and pyrogallo! (8) (as

models for ring B) do not absorb light at $\lambda > 320$ nm up to the upper pH limit for I = 0.1. Hence, the ionisation

constants of 1-6 determined spectrophotometrically at $\lambda > 320$ nm will be the microscopic constants of ring A. Only the dihydroflavonols (4-6) have suitable spectra and the following p K_a^{Λ} values were obtained, 4: 7.07, 5: 7.06 and 6: 6.76 and 11.58. Thus, the p $K_a^{B'}$ values of 4-6 can be identified by elimination. By using these p $K_a^{B'}$ values as guides, the p $K_a^{B'}$ values (and hence p $K_a^{\Lambda'}$ values) of 1-3 can be identified since the B-rings of 1,3,4 and 6 are the same, as are those of 2 and 5. Applying eqns (1) and (2) to the relevant p K_a' values gives the corresponding p K_a values (Table 2). p $K_{a1}^{\Lambda'}$ of 2 is the average of 9.68 from p $K_{a1}^{B'}$ and p $K_{a2}^{K'}$.

The acid-strengthening 4-keto group of 4-6 has no effect on the OH groups of ring B as shown by the similarity of the p K_a^B values of 1 and 3 with those of 4 and 6 and of 2 with those of 5. This confirms that ring A and ring B of these flavonoids are unconjugated. Only the OH groups of ring A are affected by the 4-keto group as shown by the lower p K_{a1}^{Λ} values of the 7-OH group of 4 and 5 relative to that of 2. pK_{a1}^{A} of 6 may also be identified with the 7-OH group since the UV spectra of the related 7hydroxyflavanones and not those of 5-hydroxyflavanones are affected by addition of sodium acetate, indicating that the 7-OH group is the more acidic. Hence, pK_{a2}^{A} of 6 corresponds to the 5-OH group. The acidity of this group is less than that of the second ionisation of ring A of 1 and may be explained by the acid-weakening effect of an intramolecular H-bond between the 5-OH and 4-keto group of 6. A similar effect has been found with H-bonded 2-hydroxyacetophenone and 8 - hydroxy - 1(2H,3H,4H) naphthalenone (9). The existence of an intramolecular

H-bond in the related 5-hydroxyflavanones has been established from IR data. 10,11

 $pK_{a_1}^B$ and $pK_{a_2}^B$ values of the 3', 4', 5'-tri-hydroxyflavonoids (2 and 5) correspond to the 3',5'-dihydroxyl group, if it is assumed that they follow the same ionisation order as 8.1^2 The acidity of the 4'-OH

822 N. P. Slabbert

Table 1. Macroscopic ionisation constants of flavanoids (1-6) at 20° and I = 0.1

Flavonoid	P <u>K'</u> 1	p <u>K</u> <u>a</u> 2	<u>рК'а</u> 3	р <u>К'а</u> 4
1	8.79(B)ª	9.44(A)	11.18(A)	13,25(B) <u>b</u>
<u>2</u>	8.71(B)	9.73(A)	11.09(B)	>13(B) ^b
<u>3</u>	8.89(B)	9.68(A)	13.20(B) <u>b</u>	
<u>4</u>	7.05(A)	9.01(B)	13.25(B) b	
<u>5</u>	7.06(A)	8.78(B)	11.12(B)	>13(B) b
<u>6</u>	6.74(A)	9.02(8)	11.55(A)	-

 \underline{a} A and B identify the values with ring A and B, respectively (see text). \underline{b} Spectrophotometrically determined values; the other values determined by notentiometric titration.

Table 2. Microscopic pK_{μ} of flavonoids (1-6)

A-ring		B-ring		
р <u>К</u> а1	р <u>К</u> <u>а</u> 2	р <u>к</u> в <u>а</u> 1	р <u>К</u> а2	р <u>К</u> <u>а</u> 3
9.26	11.18	8.97	13.25	
9.72		8.76	11.07	>13
9.58		8.99	13.20	
7.05		9.01	13.25	
7.07		8.77	11,12	>13
6.74	11.55	9.02	-	
	9.26 9.72 9.58 7.05 7.07	PKa1 PKa2 9.26 11.18 9.72 9.58 7.05 7.07	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

group of 2 and 5 would be expected to be very weak, due to the acid-weakening effect of the 3',5'-di-O⁻ group and the influence of a strong H-bond between the central OH group and either of the two O⁻ groups. The UV spectra of 2 and 5, at the upper pH limit for I = 0.1, gave no evidence for the ionisation of the 4'-OH group indicating that $pK_{a3}^{B} > 13$.

A suitable analytical wavelength was not available for determining pK_{a2}^B of 6 since the A-ring chromophore dominates the UV spectrum over the whole pH range. However, since the B-ring of 6 is the same as those of 1, 3 and 4, pK_{a2}^B of 6 should be similar to the pK_{a2}^B values of these flavonoids.

Linear relationships between pK_a and substituent σ constant have been found for series of phenols.¹³⁻¹⁹ Equation (3) has been used to assign apparent σ constants for a variety of substituents from the thermodynamic constants (${}^{T}K_a$) of phenols in water at 20°-25°.^{20,21} In order to correlate the pK_a

$$p^{T}K_{a} = -2.23\Sigma\sigma + 9.92 \tag{3}$$

values of the flavonoids (1-6), values of σ_o OH and σ_m OH (as well as σ constants for the other substituents of ring A and ring B) are required. Although σ_o OH = 0.04 and σ_m OH = 0.34 have been proposed, 17 no statistical corrections were applied to the p K_{a1} values of 7 (9.85) 22 and resorcinol (9.15) 23 from which these σ constants were calculated. Using Jaffé's original value, σ_m OH = 0.10, still gives close agreement between found and calculated p K_a values of resorcinol derivatives, 17 if statistical corrections

Table 3. pK_a of substituted pyrocatechols at 20° and I = 0.1

Phenol	R ¹	R ²	P <u>K</u> <u>a</u> 1	PK _{a2}	ø <u>m</u>	<u>ه</u>
7	н	н	9.37 <u>b</u>	13.7 <u>b</u>	0	0
<u>8</u>	ОН	н	9.05 <u>b</u>	11.2 <u>b</u>	0.10	0.12 ^C
<u>11</u>	н	Me	9.56	14.0	-0.08	-0.15
<u>12</u>	н	<u>t</u> -Bu	9.53	14.0	-0.07	-0.14
<u>13</u>	OMe	н	9.32	13.6	0.12	0.00 <u>d</u>
14	н	coo-	8.82	13.2	-0.02	0.24
<u>15</u>	н	Cl	8.62 <u>e</u>	12.6 <u>e</u>	0.37	0.23
<u>16</u>	н	so3	8.50 <u>f</u>	12.8 <u>f</u>	0.28	0.40
<u>17</u>	н	COCH ₂ C1	7.40	12.0	0.459	0.95 <u>9</u>
<u>18</u>	н	СНО	7,21	11.8	0.48	1.04
<u>19</u>	н	NO ₂	6.84 <u>h</u>	11.1 <u>h</u>	0.69	1.24
<u>20</u>	н	ОН	9.12	11.6	0.10	-0.37
21	ОН	coo-	8.68	11.4	-0.02	0.24
22	ОН	COOPr	7,89	10.9	0.37 <u>±</u>	0.64-

 $\frac{a}{a}$ of constants (refs. 20 and 21) of R^I (except for $\underline{8}$ and $\underline{13}$). $\frac{b}{a}$ Ref. 13. $\frac{c}{a}$ of OH (see text). $\frac{d}{a}$ of OMe $\frac{e}{a}$ P. Pichet and R.L. Benoit, Inorg. Chem. 6, 1505 (1967). $\frac{f}{a}$ M. Bartušek and O. Staňková, Coll. Czech. Chem. Comm. 30, 3415 (1965). $\frac{g}{a}$ Calculated from pK_{a1} in 40% dioxane (ref. 13 and eqns therein). $\frac{h}{a}$ M. Bartušek, Coll. Czech. Chem. Comm. 32, 757

h M. Bartušek, <u>Coll. Czech. Chem. Comm.</u> <u>32</u>, 757 (1967).

 $\frac{1}{2}$ of constants of the related COOEt substituent.

are applied where necessary. In addition, a recently determined $p^T K_{a1}$ value for 7 $(9.36)^{25}$ is different from the above value. Applying a statistical correction (+0.30) to 9.36, gives $\sigma_o OH = 0.12$ from eqn (3). However, this

constant is only valid if interaction between the OH groups of the o-dihydroxyl group remains constant for a series of substituted pyrocatechols. Hence, the slope of a plot of pK_{a+} vs σ constant for pyrocatechols should be similar to that of eqn (3) if the interaction remains constant. The presence of two bands (OH stretching vibrations) in the IR spectrum of 7^{26-28} and the greater acidity of 7 relative to hydroquinone have been interpreted as being due to intramolecular H-bonding (10), which could lead to a different slope. However, the slope

of the linear relationship [eqn (4)] between pK_{a1} (statistically corrected where necessary) and σ constant for 10 (Table 3) is similar to that of eqn (3) indicating that the effect of the H-bond remains constant as R is varied. It has been assumed that the

$$pK_{a1} = 9.45 - 2.17\sigma$$
 (r = 0.992, s = 0.12) (4)

OH group of 10 in the position which the substituent is the more acid-strengthening will ionise first.24 Hence, the algebraically greater σ constant is used in this correlation except for pyrogallols (8 and 22) for which the sum of σ_m OH and σ_m R² is used. Although the pyrocatechols with ionic substituents (14, 16 and 21) are not included in this correlation, since their σ constants vary with ionic strength,²⁹ inclusion of the points for these pyrocatechols gives a similar straight line. Using the Davies equation³⁰ to extrapolate the intercept of eqn (4) to zero ionic strength gives σ_0 OH = 0.12, the same value as obtained above. Using this value, a plot of pK_a (again statistically corrected where necessary) for 7, 8, 11-22 (except for pK_{a2} of 7, 11-19 since $\sigma_{o}O$ is not valid, see below) and for a series of monohydric phenols at $I = 0.1^{31.32}$ against $\Sigma \sigma$ gives the straight line,

$$pK_a = 9.65 - 2.11\Sigma\sigma$$
 (r = 0.991, s = 0.15). (5)

Since pK_{a2} of 8 corresponds to the m-OH group, 12 $\sigma_m O^- = 0.71^{21}$ is used for correlating the pK_{a2} values of 8, 21 and 22. The best fit for 1,2,4-trihydroxybenzene (20) is obtained with pK_{a1} and pK_{a2} corresponding to the 2-OH and 4-OH group, respectively.

The best correlation of the p K_{a2} values of 7†, 11–19 is obtained with the average of the substituent σ constants (σ_{av}) :

$$pK_{a2} = 13.66 - 2.57\sigma_{av}$$
 (r = 0.991, s = 0.13). (6)

A similar result has been obtained with the pK_{a1} values of 4-substituted pyrocatechols determined in 40% dioxane‡ and was rationalised on the basis that the intramolecular H-bond (10) causes both OH groups to be equally affected by the substituent.¹³ This argument is also applicable to the ionisation of the second OH group since a strong

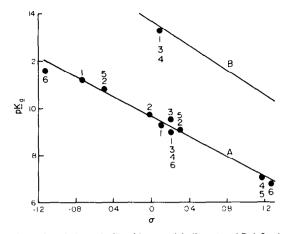


Fig. 1. Correlations of pK_a with σ : straight lines A and B defined by eqns (5) and (6), respectively.

intramolecular H-bond is possible between the OH group and the o-O group. The greater slope of eqn (6) relative to those of eqns (3)-(5) is expected since an electron-withdrawing substituent would weaken the H-bond and would also relieve the electrostatic repulsion between the resulting two O groups yielding an even lower p K_{a2} value and vice versa. Hence, a σ_o O value, calculated from p K_{a2} of 7, is not valid for the second ionisation of 10.

In order to include the pK_a values of the flavonoids (1-6, Table 2) in these correlations, the following σ constants for the substituents of ring A and ring B were utilised: $4a\text{-}CH_2R$, $\sigma_p = -0.15^{20}$ and $\sigma_o = -0.13^{21}$ as for -Me; 4a-CHROH, $\sigma_p = 0.08^{21}$ as for -CH₂OH; 4a-COR, $\sigma_p = 1.04^{20}$ as for -CHO and $\sigma_o = -0.54$ calculated from p^TK_a of 9^9 by eqn (3) and then substracting -0.08 for the *m*-methylene group; $8a\text{-}OCHR_2$, $\sigma_m = 0.12^{20}$ as for -CMe; 1'(2-chromanyl), $\sigma_m = \sigma_p = 0.08^{21}$ as for -CH₂OH. Figure 1 shows that the points for 1-6 correlate well with the straight lines defined by eqns (5) and (6). A slightly better fit is obtained with $pK_{\alpha_1}^A$ and $pK_{\alpha_2}^A$ of 1 corresponding to the 5-OH and 7-OH group, respectively. However, for 6 by far the better fit is with the reverse of this ionisation order, confirming that the 7-OH group is the more acidic and that the 5-OH group is H-bonded as in 9.

EXPERIMENTAL

(+)-Catechin (1) was isolated from cube cambier (obtained from the leaves of *Uncaria gambir*)³⁵ and (±)-fustin (4) was extracted from the heatrwood of *Rhus glabra*.^{36,37}

(-)-Robinetinidol (2), (+)-leuco-fisetinidin (3) and (+)-dihydrorobinetin (5) were generously supplied by Dr H. M. Saayman of this lab. 4-Hydroxypyrocatechol (20) was prepared by hydrolysis of 1,2,4-triacetoxybenzene (Koch-Light).³⁸ The other phenols are commercially available and were purified by either vacuum distillation or recrystallisation. Aqueous (boiled out water, cooled under N₂) solns of the phenols were stored under N₃ and standardised by potentiometric titration after addition of an excess of gemanium dioxide.³⁹

A Bjerrum-Calvin potentiometric titration technique⁴⁰ was used to determine the ionisation constants of the more acidic phenols (p $K_a < 11.5$). A spectrophotometric extrapolation technique⁴¹ was used for the less acidic phenols. UV measurements were made with a Beckman ACTA MVI and a Beckman DU spectrophotometer. In all cases, the medium was 0.1 M (KCI/HCI/KOH) at $20 \pm 0.1^{\circ}$. A Beckman Centuary SS pH meter with a Metrohm EA 147U electrode and a Metrohm Model E426 potentiometer with a Metrohm EA 125U electrode were used. The electrode systems were calibrated as [H'] probes as previously described. 42.43 The ionisation constants quoted are therefore

[†]Published p $K_{\alpha 2}$ values for 7 show considerable variation, ranging from 11.6 to 13.7.³³ However, p $K_{\alpha 2}$ 13.1 has been suggested as the minimum value at 25° and $I = 0.1.^{34}$

[‡]However, incorporating p K_{a1} values of 3-substituted pyrocatechols results in a slightly better linear relationship with the greater σ constant and not with σ_{av} .

N. P. Slabbert

concentration quotients. All measurements were made under a N_2 atmosphere and as an added precaution against oxidation of the phenols during spectrophotometric measurements, hydrazine hydrate (0.01 M) was used as an antioxidant. A typical potentiometric titration was as follows. 0.1 N KOH was used to titrate 50 ml of an aqueous solution of 0.004 N HCl and 0.996 N KCl through which N_2 was bubbled. Thereafter, an identical solution plus 0.006 M phenol was titrated. At least three such titrations were performed for each phenol. pK_a values for overlapping ionisations were calculated by least-squares treatment using the equations for two⁴⁵ and three⁴⁶ overlapping ionisations. Standard deviations for pK_a values are of the order of ± 0.02 for $pK_a < 10$ and ± 0.05 for $pK_a > 10$.

Acknowledgements—This work was supported by grants from the African Territories Wattle Industry Fund and from the Council for Scientific and Industrial Research.

REFERENCES

- ¹T. J. Mabry, K. R. Markham and M. B. Thomas, *The Systematic Identification of Flavonoids*, Part II. Springer-Verlag, Berlin (1970).
- ²G. M. Saxena and T. R. Seshadri, *Proc. Indian Acad. Sci.* 46A, 218 (1957).
- ³H. Kido and W. C. Fernelius, Pennsylvania State Univ., Contract No. AT(30-1)-907 (1960).
- ⁴K. Yamamoto and K. Takamizawa, Nippon Kagaku Zasshi 88, 345 (1967).
- S. E. Drewes and D. G. Roux, Biochem. J. 87, 167 (1963).
- ⁶G. M. Fleck, Equilibrium in Solution, p. 92. Holt, Rinehart & Winston, New York (1966).
- ⁷P. Ballinger and F. A. Long, J. Am. Chem. Soc. 82, 794 (1960).
- ⁸E. Q. Adams, J. Chem. Soc. 38, 1503 (1916).
- ^vL. B. Magnusson, C. Postmus and C. A. Craig, J. Am. Chem. Soc. 85, 1711 (1963).
- ¹⁰H. L. Hergert and E. F. Kurth, Ibid. 75, 1622 (1953).
- ¹¹B. L. Shaw and T. W. Simpson, J. Chem. Soc. 655 (1955).
- ¹²M. Bartušek and J. Zelinka, Coll. Czech. Chem. Comm. 32, 992 (1967).
- ¹³J. Corse and L. L. Ingraham, J. Am. Chem. Soc. 73, 5706 (1951).
- ¹⁴A. I. Biggs and R. A. Robinson, J. Chem. Soc. 388 (1961).
- ¹⁵M. Papoport, C. K. Hancock and E. A. Meyers, J. Am. Chem. Soc. 83, 3489 (1961).

- ¹⁶L. A. Cohen and W. M. Jones, Ibid. 85, 3397 (1963).
- P. J. Pearce and R. J. J. Simkins, Canad. J. Chem. 46, 241 (1968).
 J. Durmis, M. Karvaš and Z. Maňásek, Coll. Czech. Chem. Comm. 38, 215 (1973).
- ¹⁹H. W. Gibson and F. C. Bailey, J. Chem. Soc. Perkin II 196 (1976).
- L. A. Cohen and W. M. Jones, J. Am. Chem. Soc. 85, 3402 (1963).
 G. R. Barlin and D. D. Perrin, Quart. Rev. 2M, 75 (1966).
- R. Kuhn and A. Wassermann, Helv. Chim. Acta 11, 3 (1928).
 C. T. Abichandani and S. K. K. Jatkar, J. Indian Inst. Sci. 21A, 417 (1938).
- ²⁴H. H. Jaffé, Chem. Rev. 53, 191 (1953).
- ²⁵R. F. Jameson and M. F. Mason, J. Chem. Soc. Dalton 2610 (1972).
- ²⁶L. Pauling, J. Am. Chem. Soc. 58, 94 (1936).
- ²⁷L. L. Ingraham, J. Corse, G. F. Bailey and F. Stitt, *Ibid.* 74, 2297 (1952).
- ²⁸ E. A. Robinson, H. D. Schreiber and J. N. Spencer, J. Phys. Chem. 75, 2219 (1971).
- ²⁹H. Zollinger and W. Wittwer, Helv. Chim. Acta 39, 347 (1956).
 ³⁰C. W. Davies, Ion Association, p. 41. Butterworths, London (1962).
- ³¹C. Postmus, L. B. Magnusson and C. A. Craig, *Inorg. Chem.* 5, 1154 (1966).
- ³²K. E. Jabalpurwala and R. M. Milburn, J. Am. Chem. Soc. 88, 3224 (1966).
- ³³L. G. Sillén and A. E. Martell, Stability Constants p. 400. The Chemical Society, London (1971).
- ³⁴C. A. Tyson and A. E. Martell, *J. Am. Chem. Soc.* **90**, 3379 (1968).
- 35 A. G. Perkin and E. Yoshitake, J. Chem. Soc. 81, 1160 (1902).
- ³⁶D. G. Roux and K. Freudenberg, *Liebigs Ann.* 613, 56 (1958).
- ³⁷D. G. Roux and E. Paulus, *Biochem. J.* 77, 315 (1960).
- ³⁸M. Healey and R. Robinson, J. Chem. Soc. 1625 (1934).
- ³⁹P. Pichet and R. L. Benoit, *Inorg. Chem.* 6, 1505 (1967).
- ⁴⁰H. M. Irving and H. S. Rossotti, J. Chem. Soc. 2904 (1954).
- ⁴A. Albert and E. P. Serjeant, *The Determination of Ionization Constants* p. 52. Chapman & Hall, London (1971).
- ⁴²W. A. E. McBryde, Analyst 94, 337 (1969).
- ⁴³W. A. E. McBryde, *Ibid.* **96**, 739 (1971).
- 44L. Sommer, Coll. Czech. Chem. Comm. 28, 2101 (1963).
- ⁴⁵H. M. Irving and H. S. Rossotti, *J. Chem. Soc.* 3397 (1953).
- ⁴⁶V. T. Athavale, L. H. Prabhu and D. G. Vartak, J. Inorg. Nucl. Chem. 28, 1237 (1966).